CRM知识

产品

多年卓越品质

数千家企业客户的共同信赖

您当前的位置:Hooyn洪杨科技 > 资讯 > CRM知识 > 什么是用户画像?

什么是用户画像?

2020-02-12 13:28:59   编辑:hui   点击:
关键词:用户画像   数据建模   
1、用户画像是什么
    用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。
 
 
    男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。
\
 
用户画像,即用户信息标签化,就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌作是企业应用大数据技术的基本方式。用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。
 
 
    用户画像有很多的的标签组成,每个标签都规定了观察、认识、描述用户的角度。标签根据企业业务的发展情况,或多或少,对外而言都是一个整体,这个整体称之为用户画像。
 
2、为什么需要用户画像
         用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?
 
 
         也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?
 
 
         大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解”人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。
\
用户画像本质就是从业务角度出发对用户进行分析,了解用户需求,寻找目标客户。另外一个方面就是,金融企业利用统计的信息,开发出适合目标客户的产品。
 
 
 
提到用户画像,很多厂商都会提到360度用户画像,其实经常360度客户画像是一个广告宣传用语,根本不存数据可以全面描述客户,透彻了解客户。人是非常复杂的动物,信息纬度非常复杂,仅仅依靠外部信息来刻画客户内心需要根本不可能。
 
 
 
用户画像一词具有很重的场景因素,不同企业对于用户画像有着不同对理解和需求。举个例子,金融行业和汽车行业对于用户画像需求的信息完全不一样,信息纬度也不同,对画像结果要求也不同。每个行业都有一套适合自己行业的用户画像方法,但是其核心都是为客户服务,为业务场景服务。
 
 
 
3、用户画像怎么设计
一个标签通常是人为规定的高度精炼的特征标识。
 
 
 
如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。
 
 
 
如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。
 
 
 
人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。
 
 
 
3.1 数据源分析
 
 
构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。
 
 
 
对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期…所有的子分类将构成了类目空间的全部集合。
 
 
 
这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。
 
 
 
本文将用户数据划分为静态信息数据、动态信息数据两大类。
 
 
 
3.1.1、静态信息数据
 
 
用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。
 
 
 
3.2.2、动态信息数据
 
 
用户不断变化的行为信息,如果存在上帝,每一个人的行为都在时刻被上帝那双无形的眼睛监控着,广义上讲,一个用户打开网页,买了一个杯子;与该用户傍晚溜了趟狗,白天取了一次钱,打了一个哈欠等等一样都是上帝眼中的用户行为。当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。
 
 
 
本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。
 
 
 
在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。
 
 
 
3.2 目标分析
 
 
用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。
 
如,红酒 0.8、李宁 0.6。
 
标签,表征了内容,用户对该内容有兴趣、偏好、需求等等。
 
权重,表征了指数,用户的兴趣、偏好指数,也可能表征用户的需求度,可以简单的理解为可信度,概率。
 
 
 
3.3 数据建模方法
 
 
下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。
 
 
 
3.3.1、什么用户
关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。
 
 
 
以上列举了互联网主要的用户标识方法,获取方式由易到难。视企业的用户粘性,可以获取的标识信息有所差异。
 
 
 
3.3.2、什么时间
时间包括两个重要信息,时间戳+时间长度。时间戳,为了标识用户行为的时间点,如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常采用精度到秒的时间戳即可。因为微秒的时间戳精度并不可靠。浏览器时间精度,准确度最多也只能到毫秒。时间长度,为了标识用户在某一页面的停留时间。
 
 
 
3.3.3、什么地点
用户接触点,Touch Point。对于每个用户接触点。潜在包含了两层信息:网址 + 内容。网址:每一个url链接(页面/屏幕),即定位了一个互联网页面地址,或者某个产品的特定页面。可以是PC上某电商网站的页面url,也可以是手机上的微博,微信等应用某个功能页面,某款产品应用的特定画面。如,长城红酒单品页,微信订阅号页面,某游戏的过关页。
 
 
 
3.3.4、什么内容
每个url网址(页面/屏幕)中的内容。可以是单品的相关信息:类别、品牌、描述、属性、网站信息等等。如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签。
 
 
 
注:接触点可以是网址,也可以是某个产品的特定功能界面。如,同样一瓶矿泉水,超市卖1元,火车上卖3元,景区卖5元。商品的售卖价值,不在于成本,更在于售卖地点。标签均是矿泉水,但接触点的不同体现出了权重差异。这里的权重可以理解为用户对于矿泉水的需求程度不同。即,愿意支付的价值不同。
 
 
 
标签权重
 
矿泉水 1 // 超市
 
矿泉水 3 // 火车
 
矿泉水 5 // 景区           
 
 
 
案例:你是我的优乐美,优乐美用户促销
 
 
 
类似的,用户在京东商城浏览红酒信息,与在品尚红酒网浏览红酒信息,表现出对红酒喜好度也是有差异的。这里的关注点是不同的网址,存在权重差异,权重模型的构建,需要根据各自的业务需求构建。
 
 
 
所以,网址本身表征了用户的标签偏好权重。网址对应的内容体现了标签信息。
 
 
 
3.3.5、什么事
用户行为类型,对于电商有如下典型行为:浏览、添加购物车、搜索、评论、购买、点击赞、收藏等等。
 
 
 
不同的行为类型,对于接触点的内容产生的标签信息,具有不同的权重。如,购买权重计为5,浏览计为1
 
红酒 1 // 浏览红酒
 
红酒 5 // 购买红酒
 
 
 
综合上述分析,用户画像的数据模型,可以概括为下面的公式:用户标识 + 时间 + 行为类型 + 接触点(网址+内容),某用户因为在什么时间、地点、做了什么事。所以会打上**标签。
 
 
 
用户标签的权重可能随时间的增加而衰减,因此定义时间为衰减因子r,行为类型、网址决定了权重,内容决定了标签,进一步转换为公式:
 
标签权重=衰减因子×行为权重×网址子权重
 
 
 
如:用户A,昨天在品尚红酒网浏览一瓶价值238元的长城干红葡萄酒信息。
 
标签:红酒,长城
 
时间:因为是昨天的行为,假设衰减因子为:r=0.95
 
行为类型:浏览行为记为权重1
 
地点:品尚红酒单品页的网址子权重记为 0.9(相比京东红酒单品页的0.7)
 
 
 
假设用户对红酒出于真的喜欢,才会去专业的红酒网选购,而不再综合商城选购。
 
 
 
则用户偏好标签是:红酒,权重是0.95*0.7 * 1=0.665,即,用户A:红酒 0.665、长城 0.665。
 
 
 
上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。
 
 
版权声明:本文为CSDN博主「灵夕丨月下灵」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xiaolong_4_2/article/details/80879337

现在开始使用 HooynCRM 积累更多客户

联系客服 免费体验
产品
线索管理
客户管理
审批管理
移动办公
呼叫中心
自定义扩展
行业
离岸注册行业
预约管理系统
经销商管理系统
手术管理信息系统
移民管理系统
劳务派遣管理系统
关于
公司简介
服务协议
联系我们
Tag
云计算 ERP CRM SaaS 分销系统 客户满意度 客户定位 订单管理系统 经销商 解决方案 决策分析 客户保留 开源crm 数据挖掘 用户画像 PaaS

CRM系统

售前咨询:0755-86967801
售后支持:0755-86967802
在线客服:点击咨询
服务邮箱:hui@hooyn.com
在线咨询 电话咨询
售前咨询:
0755-86967801
售后支持:
0755-86967802